

LEARN TO MAKE, MAKE TO LEARN

Camille Moussette, 19.04.2012, DeSForM 2012

PHD PROJECT

SIMPLE HAPTICS, SKETCHING PERSPECTIVES FOR HAPTIC INTERACTION DESIGN

DANIEL FÄLLMAN, INTERACTIVE INSTITUTE UMEÅ

BILL BUXTON, MICROSOFT RESEARCH

LEARN TO MAKE, MAKE TO LEARN

Reflections from

4 Sketching Haptics Workshops

GUI > TUI > NUI > physical

Interaction Design

Haptics

"we need more HCI and Design"

Haptic IxD

Haptic IxD

Laxton's 3 design skills model (1969)

(EXPERIENCE) PROTOTYPING

(EXPERIENCE) PROTOTYPING

VS

SKETCHING (IN HARDWARE)

The Anatomy of Prototypes

Lim, Y.-K., Stolterman, E., and Tenenberg, J. 2008

Prototypes are **filters** that traverse a design space and are **manifestations** of design ideas that concretize and externalize conceptual ideas.

A "good" prototype is very dependent on what you are trying to explore, evaluate, or understand.

The Anatomy of Prototypes

Lim, Y.-K., Stolterman, E., and Tenenberg, J. 2008

The Principles of Prototyping

Fundamental prototyping principle

Prototyping is an activity with the purpose of creating a **manifestation** that, in its simplest form, **filters** the qualities in which designers are interested, without distorting the understanding of the whole.

Economic principle of prototyping

The best prototype is one that, in the **simplest** and the **most efficient way**, makes the possibilities and limitations of a design idea visible and measurable.

Characterizing a sketch/prototype?

Fidelity scale (low/hi/mixed)

Audience, materials, resources

"Show & Tell" (sales)

"Show & Ask" (usability)

Prototype as a Hypothesis (scientific method)

Prototype as a Marketplace

(exchange values, platform for productive collaboration, generation of knowledge/value)

Prototype as a Playground

(serious play, relaxation of rules, play vs serious vs real)

Sketching vs prototyping

Transaction cost (Coase/Buxton)

When/where can you afford to **really** explore alternatives?

Design calls for multiple equally viable variations

Consideration beyond the common and the expected

Priorities: discovery, sensitivity, non-committal actions, reflective practice

Sketching Haptics Workshops

	Host program level	Group size	Location
A	Interaction Design MA level	9	Umeå, Sweden
В	Computer Science MA level	16	Gothenburg, Sweden
С	Computer Science MA, PhD and Post-Doc	9	Vancouver, Canada
D	Interaction Design MA level	11	Umeå, Sweden

Typical schedule

	AM	PM
Day 1	kick-off presentation + what is haptics + intro to movement, mechanisms and actuation	assignment #1 no technology (cardboard, glue, tape, rubber band, etc.)
Day 2	review of assignments #1 + design process lecture + presentation of various actuators + assignment #2 (3 different scales of actuation)	work on assignment #2 + recap Arduino
Day 3	review of assignments #2 + lecture about motors and actuators with Arduino	rework assignment #1 or #2 with Arduino control
Day 4	assignment #3 (significant challenge) + code/hardware clinics	collective literature review/ discussion + work on assignment #3
Day 5	work on assignment #3	final presentations, video documentation and debrief

Orders of magnitude

haptics/actuation

1s vibration servo/solenoid mechanism gravity

1mm 10mm 10000mm

haptics/actuation

1s	vibration	servo/solenoid	mechanism	gravity	
0.001s	piezo	EAP	222	222	
	1mm	10mm	100mm	10000mm	1

haptics/actuation

0.001s	piezo	EAP	555	555
1 s	vibration	servo/solenoid	mechanism	gravity
1000s	mechanism	organic growth	222	222

grow, explode, shrink, scale, rotate, pulse, flick, rest, disappear, clutch, release, hold, capture, pin, prompt, confirm, repeat, stable, glide, slide, stop, hit, kick, cancel, ease in/out, ramp, augment, increase, decrease, agitate, shake, twist, transform, bounce, cycle, follow, guide, grab, screw, implode, circulate, constrain, channel, force, lead, invite, smooth, hard, harsh, solid, soft, compliant, bounce, spring, break, stop, collide, permute, accelerate, react

Learn to make

Make to learn

Sensing and moving atoms

Hardware is hard!

Establishing the right sketching level

Always room to grow

Making/building challenges

Learn to make

Make to learn

Sensing and moving atoms

Hardware is hard!

Establishing the right sketching level

Always room to grow

Making/building challenges

Visual equivalent: build your monitor!

Platform to engage/discover haptics

Common/shared understanding

Affinity with your design materials

Exhilarating simplicity!

a. Haptic qualities vs available resources/skills

b. Building haptics to learn haptics

c. Actuation alone is not haptics

Umeå Institute of Design + IDEO

Rapid Prototyping/Sketching Haptics

people + hardware + control + psychophysics + context

(design) constraints are stimulating

fail early, fail often, multiple valid alternatives, orders of magnitude

human centric vs technology centric

know and exploit material properties, assembly mechanisms matter

"use the world to control the world"

acknowledge the various limitations of sketching/prototyping

Umeå Institute of Design Umeå University

THE SWEDISH FACULTY FOR DESIGN RESEARCH AND RESEARCH EDUCATION

"FAIL EARLY AND FAIL OFTEN"

camille.moussette@dh.umu.se - www.partly-cloudy.com